Optimization Models and Prediction of Drilling Rate (ROP) for the Brazilian Pre-Salt Layer
نویسندگان
چکیده
Optimization Models and Prediction of Drilling Rate (ROP) for the Brazilian Pre-Salt Layer Carlos M. C. Jacinto, Paulo J. Freitas Filho*, Sílvia M. Nassar , Mauro Roisenberg , Diego G. Rodrigues , Mariana D. C. Lima CENPES – PETROBRAS RESEARCH CENTER/PDGP/PCP Rio de Janeiro, RJ, 21941-915, BRAZIL Dept. of Informatics and Statistics PPGCC-Federal University of Santa Catarina P.O.Box 476, INE – CTC – UFSC. Florianópolis, SC, 88040-900, BRAZIL [email protected]
منابع مشابه
Application of an Adaptive Neuro-fuzzy Inference System and Mathematical Rate of Penetration Models to Predicting Drilling Rate
The rate of penetration (ROP) is one of the vital parameters which directly affects the drilling time and costs. There are various parameters that influence the drilling rate; they include weight on bit, rotational speed, mud weight, bit type, formation type, and bit hydraulic. Several approaches, including mathematical models and artificial intelligence have been proposed to predict the rate o...
متن کاملMulti-objective Pareto optimization of bone drilling process using NSGA II algorithm
Bone drilling process is one the most common processes in orthopedic surgeries and bone breakages treatment. It is also very frequent in dentistry and bone sampling operations. Bone is a complex material and the machining process itself is sensitive so bone drilling is one of the most important, common and sensitive processes in Biomedical Engineering field. Orthopedic surgeries can be improved...
متن کاملDetermination of constant coefficients of Bourgoyne and Young drilling rate model using a novel evolutionary algorithm
Achieving minimum cost and time in reservoir drilling requires evaluating the effects of the drilling parameters on the penetration rate and constructing a drilling rate estimator model. Several drilling rate models have been presented using the drilling parameters. Among these, the Bourgoyne and Young (BY) model is widely utilized in order to estimate the penetration rate. This model relates s...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملThe Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013